Wybrane algorytmy optymalizacji autor :  Marian Chudy format :  B5 ISBN  978-83-7837-034-5 |
Wstęp
1. Elementy analizy wypukłej
1.1. Zbiory wypukłe
1.2. Funkcje wypukłe
1.3. Zbiory wypukłe generowane przez ograniczenia, zadania wypukłe
2. Podstawy wierzchołkowych metod rozwiązywania zadań liniowych
2.1. Zadania prymalne i dualne
2.2. Algebraiczny opis wierzchołków zbioru rozwiązań dopuszczalnych zadania liniowego
3. Algorytmy sympleksowe (wierzchołkowe) rozwiązywania zadań liniowych
3.1. Algorytm prymalny sympleks
3.2. Metoda wyznaczania początkowego rozwiązania bazowego
3.3. Przykład rozwiązywania zadania liniowego algorytmem prymalnym
3.4. Algorytm dualny sympleks
3.5. Przykład rozwiązywania zadania liniowego algorytmem dualnym
3.6. Zadania sprowadzalne do liniowych
4. Złożoność obliczeniowa algorytmów
4.1. Zadania decyzyjne i optymalizacyjne
4.2. Złożoność algorytmów
4.3. Klasy problemów decyzyjnych
4.4. Złożoność zadania liniowego i algorytmów jego rozwiązywania
5. Zadania dyskretne. Metody rozwiązywania zadań dyskretnych
5.1. Relaksacje i restrykcje
5.2. Zadania unimodularne
5.3. Metody odcięć
5.4. Ogólna metoda podziału i oszacowań
5.5. Procedura obliczeniowa ogólnej metody podziału i oszacowań
5.6. Przykład rozwiązywania zadania PCL metodą podziału i oszacowań
5.7. Metoda podziału i oszacowań dla zadań PLB
5.8. Procedura obliczeniowa przeglądu pośredniego dla zadań PLB
5.9. Przykład rozwiązywania zadania PLB metodą podziału i oszacowań
5.10. Metoda rozwiązywania zadania PLB z wykorzystaniem ograniczenia zastępczego
5.11. Algorytmy heurystyczne
5.12. Przekształcanie zadań dyskretnych
6. Nielinowe zadania optymalizacji bez ograniczeń
6.1. Gradientowe metody optymalizacji bez ograniczeń
6.2. Bezgradientowe metody minimalizacji bez ograniczeń
6.3. Metody minimalizacji w kierunku
7. Nieliniowe zadania optymalizacji z ograniczeniami
7.1. Rodzaje zadań z ograniczeniami
7.2. Metoda punktu siodłowego rozwiązywania zadań nieliniowych
7.3. Metody funkcji kary
7.4. Metody kierunków dopuszczalnych
7.5. Uogólnienia zadań optymalizacji
7.6. Zagadnienia dualności w optymalizacji
8. Wybrane zadania optymalizacji
8.1. Wprowadzenie
8.2. Jednoetapowe zadania bazowe z losową funkcją celu
8.3. Jednoetapowe zadania z probabilistycznymi ograniczeniami
8.4. Jednoetapowy P-model
9. Metoda punktu wewnętrznego
9.1. Wprowadzenie
9.2. Zmodyfikowana metoda Newtona
9.3. Samo-regularne funkcje barierowe
9.4. Podstawowa procedura obliczeniowa metody punktu wewnętrznego
9.5. Ocena zbieżności metody ścieżki wewnętrznej
10. Obliczenia równoległe w optymalizacji
10.1. Ogólne formuły iteracyjne
10.2. Obliczenia równoległe w algorytmach rozwiązywania zdań optymalizacji bez ograniczeń
10.3. Obliczenia równoległe w algorytmach rozwiązywania zadań optymalizacji z ograniczeniami
11. Programowanie półokreślone
11.1. Wprowadzenie
11.2. Zadanie półokreślone
12. Probabilistyczne algorytmy rozwiązywania zadań optymalizacyjnych
12.1. Preliminaria
12.2. Minimalizacja bez ograniczeń
12.3. Zdania minimalizacji z ograniczeniami
Powrót do strony głównej  |   e-mail  |   Zamówienie